氨氮传感器的原理
作者:水质监测时间:2025-02-17
河流氨氮浓度居高不下,主要源于外源性污染。生活污水和工业废水的随意排放,以及农业生产中化肥的过度使用,引发了面源污染。这些污染源持续不断地向自然水体输送大量含氮污染物,最终造成氨氮超标。
氨氮超标是典型的外源还原性污染物入侵所致,这类污染物多为有机污染物,即我们常说的 COD。它们进入水体后,会刺激好氧生物大量繁殖,大量消耗河水中的溶解氧(Do),使水体陷入缺氧甚至厌氧状态,严重破坏了水体原本稳定的氮循环平衡和生态系统。正常自然河水的 Do 值一般大于 2mg/L,在这种条件下,水体中的氨氮能够顺利被氧化成硝酸盐,使水体呈现氧化性,氨氮浓度也能维持在较低水平。
要解决氨氮超标这一难题,最直接且行之有效的途径,是全方位阻断外源污染与内源污染,同步大力推进受损生态系统的修复工作,致力于让水体的 Do 值回升至理想水平。诚然,利用曝气机等人工手段,能够提升 Do 含量,但前提是必须优先攻克外源污染这一关键问题。倘若不然,溶解氧的消耗将始终高于补给,那么所有的治理行动都将付诸东流。唯有重新构建河流生态系统的平衡,才能够从根源上实现氨氮含量的降低,让河流重归清澈与健康。
在推进智慧水务项目的过程中,很多客户都会频繁询问氨氮传感器的相关问题,这充分体现了氨氮指标在水质监测中的关键地位。如果水质感知层只能选取一个水质参数,氨氮无疑是众多人的首选。
目前,氨氮的测量技术主要有氨气敏电极法、水杨酸分光光度法、纳氏试剂分光光度法以及铵离子电极法。
在智慧水务项目实践中,化学试剂法由于后期维护工作繁重,并且需要建造专门的站房,很难满足项目对高密度、低成本布点和建模的需求。
采用电极法监测水体氨氮,不仅避开了化学试剂分析法繁琐的操作流程,还具有检测范围广泛、响应迅速的优点,非常适合智慧水务感知层进行自动连续监测。
电极法主要分为氨气敏电极法和铵离子电极法这两种。
氨气敏电极法的突出优势是不受水体色度和浊度的干扰,然而其灵敏度和稳定性受电极质量的影响极大,电极故障率较高,在实际使用过程中,必须高度重视电极的维护工作。也正因如此,氨气敏电极在智慧水务领域的推广面临较大阻碍。
铵离子电极一般是由工作电极和参比电极组成的二电极测量系统,通过电极膜电位来测定溶液中的铵离子浓度。
工作电极与水体接触的界面处设有铵离子选择性膜,当该选择性膜与含有铵离子的溶液接触时,水体中铵离子浓度的任何变化都会在选择膜外膜引发相应的电位变化。将这个电位变化与参比电极的电位进行对比,再依据能斯特方程,就能够将被测溶液的电位准确转换为铵离子浓度。
推荐阅读:水质检测仪器十大品牌
本文地址:http://www.ftshuizhi.com/news/854.html
- 相关产品
- 相关文章
-
06-132025
那些常见的在线水质传感器
常见的在线水质传感器有在线水温传感器、水质透明度传感器、在线水硬度传感器、水中油传感器、水质蓝绿藻传感器、叶绿素a传感器、污泥浓度传感器、水质电导率传感器、在线余氯传感器、在线 ORP 传感器、水质在线cod浊度传感器、在线氨氮PH一体式传感器等等。
-
06-112025
测水文,少了雷达水位流速一体机可不行!
雷达水位流速一体机是一款集多种优势于一体的水文测量设备。
-
06-092025
深入了解溶解氧及荧光法溶解氧传感器
大家对溶解氧有多少认知呢?今天就为各位介绍一下荧光法溶解氧传感器的相关知识。
-
06-052025
基于雷达技术的「非接触式」河道水位监测站
浮子式、压力式传感器易受水流冲刷、泥沙淤积、水质腐蚀及漂浮物撞击影响,导致测量精度下降、设备损坏,且在恶劣天气下难以稳定工作。而基于雷达技术的「非接触式」河道水位监测站就不一样了。